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Abstract

We consider how unit root and stationarity tests can be used to study
the convergence of prices and rates of in�ation. We show how the joint
use of these tests in levels and �rst di¤erences allows the researcher to dis-
tinguish between series that are converging and series that have already
converged, and we set out a strategy to establish whether convergence oc-
curs in relative prices or just in rates of in�ation. Special attention is paid
to the issue of whether a mean should be extracted in carrying out tests in
�rst di¤erences and whether there is an advantage to adopting a (Dickey-
Fuller) unit root test based on deviations from the last observation. The
asymptotic distribution of this last test statistic is given and Monte Carlo
simulation experiments show that the test yields considerable power gains
for highly persistent autoregressive processes with �relatively large�initial
conditions. The tests are applied to the monthly series of the Consumer
Price Index in the Italian regional capitals over the period 1970-2003.
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1. Introduction

The issue of price and in�ation convergence between di¤erent regions has attracted
considerable interest in the recent years. Geographical barriers, local monopoly
power and the presence of non-tradable goods are possible explanations of why
prices may not converge within regions in the same country. Engel and Rogers
(2001), Cecchetti et al. (2002), Chen and Devereux (2003) are recent empirical
studies on price convergence among US regions.
We consider how unit root and stationarity tests can be used to study the

convergence properties of price levels and in�ation rates. We show how the joint
use of these tests in levels and �rst di¤erences allows the researcher to distinguish
between series that are converging and series that have already converged, and
we set out a strategy to establish whether convergence occurs in relative prices or
just in rates of in�ation. Special attention is paid to the issue of whether a mean
should be extracted in carrying out tests in �rst di¤erences and whether there
is an advantage to adopting a (Dickey-Fuller) unit root test based on deviations
from the last observation. The asymptotic distribution of this last test statistic is
given and Monte Carlo simulation experiments show that the test yields consid-
erable power gains for highly persistent autoregressive processes with �relatively
large� initial conditions, the case of primary interest for analysing convergence.
A modi�ed version of the test that draws on the ideas in Elliott, Rothenberg and
Stock (1996) is also investigated.
The tests are applied to the monthly series of the Consumer Price Index (CPI)

in the Italian regional capitals over the period 1970-2003. As this index is not an
absolute price level, we are investigating what might be labelled, following Engel
and Rogers (2001), the �proportional law of one price�.

2. Stability and convergence

2.1. Stability

If the di¤erence between two nonstationary time series, yt; is a stationary process
with �nite non-zero spectrum at the origin, we will say they have a stable rela-
tionship. The null hypothesis of stability may be tested by a stationarity test.
Such a test will reject for large values of

�1(m) =

PT
t=1

�Pt
j=1 ej

�2
T 2b!2(m) ; (2.1)
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where et = yt � y are the de-meaned observations and, following Kwiatkowski,
Phillips, Schmidt and Shin (1992), hereafter KPSS, b!2(m) is a non-parametric esti-
mator of the long run variance of yt; that is b!2(m) = 
̂(0)+2Pm

�=1w (� ;m) 
̂(�);with
w (� ;m) being a weight function, such as the Bartlett window, and b
(�) the sample
autocovariance of yt at lag � :
If the mean is known to be zero under the null, then yj rather than ej is used to

construct the test statistic, now denoted1 by �0(m): Under the null hypothesis of
zero-mean stationarity of yt; the asymptotic distribution of �0(m) is given by the
integral of a squared Brownian motion process, rather than a Brownian bridge.
The �0(m) test will have power against a stationary process with a non-zero mean
as well as against a non-stationary process. As shown in Busetti and Harvey
(2006), another e¤ective test can be based on the non-parametrically corrected �t-
statistic�on the mean of yt; that is t(m) =

p
Ty=b!(m):Under the null hypothesis

of zero mean stationarity t(m) converges to a standard Gaussian distribution.
Busetti and Harvey (2006) show that this t-test is nearly as powerful as �0(m)
against non-stationarity but is much more powerful against the alternative of
a non-zero mean; they advise it be used when either alternative is of interest.
Parametric versions of the tests are also possible.

2.2. Convergence

If yt is stationary with �nite non-zero spectrum at the origin, the series have
already converged. However, they may be in the process of converging, have
just converged or have converged some time ago but with a large part of the
series dependent on initial conditions. A suitable model will be asymptotically
stationary, satisfying the condition that lim�!1E(yt+� jYt) = �; where Yt denotes
current and past observations. Convergence is said to be absolute if � = 0,
otherwise it is relative (or conditional); see, for example, Durlauf and Quah (1999).
The simplest such convergence model is an AR(1) process

yt � � = � (yt�1 � �) + �t; t = 2; :::; T; (2.2)

where �t�s are i.i.d. innovations and y0 is a �xed initial condition. By rewriting
(2.2) in error correction form as �yt = 
 + (�� 1)yt�1 + �t; where 
 = �(1� �);
it can be seen that the expected growth rate in the current period is a negative

1Unlike the case when the mean is subtracted, the statistic is di¤erent when reverse partial
sums are used; see Busetti and Harvey (2006). This is not of any practical importance in the
present context.
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fraction of the gap between the two series after allowing for a permanent di¤erence,
�. We can therefore test against convergence, that is H0 : � = 1 against H1 : � <
1; by a unit root test. The power of the test will depend on the initial conditions,
that is how far y0 is from �: If � is known to be zero, the test based on the
Dickey-Fuller (DF) t�statistic with no constant, denoted � 0; is known to perform
well, with a high value of jy0j actually enhancing power; see Müller and Elliott
(2003).
What happens when testing for relative convergence? Including a constant in

the DF regression and computing the t�statistic, denoted as � 1; reduces power
considerably. The test of Elliott, Rothenberg and Stock (1996), hereafter denoted
ERS, also performs rather poorly as jy0 � �j moves away from zero; again see
Müller and Elliott (2003) and section 2.3 below. A possible way of enhancing
power in this situation is to argue that we should set � equal to yT and then run
the simple DF test (without constant) on the observations yt� yT ; t = 1; :::T � 1:
We will denote this test statistic as � �: When � = 1; the asymptotic distribution
of � � is

� �
d! �(W (1)2 + 1)
2
hR 1
0
W (r)2dr

i
1=2

(2.3)

where W (r); is a standard Wiener process; for the proof of this result see the
working paper version Busetti, Fabiani and Harvey (2006). The 10%, 5% and 1%
lower tail quantiles of the limiting distribution are -2.43, -2.69 and -3.16, respec-
tively. The power properties of the � � test are evaluated in the next subsection
by Monte Carlo simulation experiments. It turns out that it is considerably more
powerful than � 1 for series that start far apart.
A possible objection to � � is that it introduces noise into the proceedings

because of the variability in the last observation. This e¤ect might be mitigated
by estimating � by a weighted average of the most recent observations. Some
rationale for this may be obtained by considering the theory for the ERS test.
This involves the estimation of � by

b�c = "y1 + (1� �) TX
t=2

(yt � �yt�1)
#
=[1 + (T � 1)(1� �)2] (2.4)

where � = 1 + c=T: The recommended value of c is 7, as in Elliott, Rothenberg
and Stock (1996). If c = 0 we end up subtracting the �rst observation. The
asymptotic distribution for the t-statistic formed from yt� b�c is the standard one
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for � 0: The de-meaning is based on GLS estimation, assuming that � = y0: If
instead we set � = yT+1; then we �nd

b��c =
"
�
2
yT + (1� �)

TX
t=2

(yt � �yt�1)
#
=[�

2
+ (T � 1)(1� �)2] (2.5)

As in (2.4) the weights sum to unity. Denote the resulting test statistic as � �GLS;c:
As � approaches one, all the weight goes on to yT and we obtain � �:More generally,
a higher order autoregression is used, that is

�yt = 
 + (�� 1) yt�1 + 
1�yt�1 + :::+ 
p�1�yt�p+1 + �t; (2.6)

The Augmented Dickey-Fuller (ADF) test is based on such a regression. ERS
recommend the use of (2.6), without the constant, having �rst subtracted b�c from
yt�1: An alternative would be to estimate � from (2.6) with � set to �. When
yT+1 = � this leads to an estimator that places relatively more weight on the last
p observations. Another possibility is to work within an unobserved components
framework where the model is an AR(1) plus noise. In this case b��c is replaced
by an estimator close to an exponentially weighted moving average (EWMA).
The asymptotic distribution of all these modi�ed ERS statistics under the null
hypothesis is the same as � �:
The contrast between (log) price indices in Florence and Aosta shown in Fig-

ure 1 for seasonally unadjusted data provides an illustration. After seasonal ad-
justment, we use ADF-type regressions to compute the statistics � 1 and � � with
number of lags chosen according to the modi�ed AIC criterion (MAIC) of Ng and
Perron (2001). We obtain � 1 = �2:53 and � � = �2:95;where � is estimated as
the average of the last twelve months. Thus by including a constant term we are
unable to reject the null hypothesis, even at 10% level of signi�cance, while with
� � we reject at 5% level. Notice that in this example the series start quite far
apart: the ratio of the initial condition to the residual standard deviation is about
26 in a sample of 408 observations.

2.3. Monte Carlo evidence on the power of � � and related tests

Here we report Monte Carlo simulation experiments designed to compare the
power of � � and the GLS de-meaning test, � �GLS;c; with the power of the standard
DF t-test, � 1:We consider a near-unit root data generating processes with a range
of initial conditions and set c = 10 for � �GLS;c; recall that c = 0 corresponds to �

�
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and that for both � � and � �GLS;10 the limiting distribution is given by (2.3) with
critical values as in table 1. We also examine the Q�(�;1) test of Müller and
Elliott (2003); this test belongs to a class of point optimal invariant tests and is
designed to give high power for large initial conditions.2 The test statistic is com-
puted as described in Elliott and Müller (2006, eq. 15), letting k ! 1: Finally,
for completeness, we report results for the DF � GLS test of ERS, obtained by
GLS de-meaning under the assumption that y0 = 0:
The Monte Carlo experiment considers the AR(1) data generating process,

t = 1; 2; :::; T;

yt = �+ ut; ut = (1� c=T )ut�1 + �t; �t � NID(0; 1)

with c taking on the values 0; 1; 2:5; 5; 10 and u0 = �+K; with K varying among
0, 5, 10, 15, 20, 25, 30 and 50:The notation NID(a; b) indicates a Gaussian
independent and identically distributed process with mean a and variance b: Thus
yt is a highly persistent process for c > 0 and a unit root process for c = 0: K is the
magnitude of the initial condition in units of the disturbance standard deviation.
Note that � 1; � � and Q�(�;1) are invariant to � and so this is set equal to zero
in the simulations.
Table 1 contains the simulated rejection frequencies of these tests for T = 100

and a 5% signi�cance level. This magnitude of the sample size might be most
relevant for quarterly data. In this case c = 5 is quite plausible as it corresponds to
� = 0:95; a smaller � would mean unusually fast convergence. A value above 0:975
(c = 2:5) is quite slow. Table 1 shows that, for c = 2:5 and 5, � � is considerably
more powerful than the standard DF test � 1 when the initial condition is relatively
large. In fact � 1 is only better when K is 5 or zero and then the power is so low
as to render both tests useless. For c � 5; the use of � �GLS;10 would allow further
gains over � �, however those gains do not seem as large as the losses incurred
for c = 2:5 and 1: Similarly the Q�(1 � 10=T;1) test is generally dominated by
� �when c � 5 and K > 10: Note that our simulation results are consistent with
those reported in table 3 of Elliott and Müller (2005): for instance, their case of
� = 0:95 and � = 3 corresponds in our framework to T = 100; c = 5; K � 10 :
their size corrected power of 0.29 is analogous to our reported rejection frequency
0.28. Finally, the power of the DF-GLS test of ERS is much higher than that of the
other tests forK = 0; but, rather than increasing, it approaches zero rather quickly

2The ERS test of Elliott et al. (1996) and the test of Elliott (1999) belong to the family of
Q�(�; k) tests for, respectively, k = 0 and k = 1:We are grateful to a referee for suggesting that
we look at the Q�(�; k) test.
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as the initial condition becomes larger. On balance, the simple test � � seems
to display the most desirable power properties unless the initial conditions are
close to zero. Additional simulation results, for the case T = 400 and perhaps
more relevant for the case of monthly data, are contained in the working paper
version Busetti, Fabiani, Harvey (2006). Note that in the local-to-unity framework
(with the autoregressive parameter depending on the sample size and the initial
condition �xed), the power of the tests for non-zero initial conditions are lower
the larger is the sample. On the other hand, if the autoregressive parameter is
kept �xed (e.g. c = 2:5 with T = 100 versus c = 10 with T = 400) the power
increases with the sample size for given initial condition.
Multivariate tests of stability and convergence can be constructed by applying

(multivariate) stationarity and unit root tests to the vector of contrasts between
each unit and a benchmark. Further details are contained in the working paper
version Busetti, Fabiani, Harvey (2006).

3. Testing stability and convergence in levels and �rst dif-
ferences

For data on prices it is of interest to test the hypotheses of stability and conver-
gence in both levels and �rst di¤erences, that is to analyze the dynamics of both
relative prices and in�ation di¤erentials. Let Pi;t denote some weighted average of
prices in region i at time t: If information is available only for a price index, the
observations are pi;t = Pi;t=Pi;b; i = 1; :::; n; t = 1; ::::; T; where b 2 f1; :::; Tg is
the base year. The di¤erence - or contrast - between (the log of ) this price index
and one in another region, say region j, denoted yi;jt , is

yi;jt = log pi;t � log pj;t; t = 1; ::::; T; i; j = 1; 2; :::; n (3.1)

where yi;jb = 0 by de�nition. This is the logarithm of the relative price between
the two regions. The base can always be changed to a di¤erent point in time, � ; by
subtracting y � from all the observations. It is not possible to discriminate between
absolute and relative convergence with price indices; all that can be investigated
is convergence to the proportional law of one price. The appropriate test for
stability is �1(m): Not subtracting the mean gives a test statistic, �0(m), that
is not invariant to the base and does not give the usual asymptotic distribution
under the null hypothesis of a zero mean stationary process since treating the y0ts
as independent is incorrect. A test of convergence, on the other hand, can be
based on a DF statistic,� �; formed by taking the base to be the last period.
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The contrasts in the rate of in�ation, that is the in�ation di¤erentials,

�yi;jt = � log pi;t �� log pj;t; t = 1; ::::; T (3.2)

are invariant to the base year since this cancels out yielding �yi;jt = � logPi;t �
� logPj;t: A test of the null hypothesis that there are no permanent, or persistent,
in�uences on an in�ation rate contrast amounts to testing that �yt is stationary
with a mean of zero. The appropriate tests are therefore �0(m) and t(m): Similarly
the null hypothesis of no convergence in an in�ation rate contrast against the
alternative of absolute convergence can be tested using � 0; the t-statistic obtained
from an ADF regression without a constant.3

3.1. A testing strategy

Taking account of the results of unit roots and stationarity tests allows the re-
searcher to distinguish between regions that have already converged (characterized
by rejection of unit root and non-rejection of stationarity test) and regions that
are in the process of converging (rejection by both tests4). However, since both
levels and �rst di¤erences are of interest, the order of testing is also important:
do we start the testing procedures with levels or �rst di¤erences?
As regards convergence tests, Dickey and Pantula (1987), argue that it is best

to test for a unit root in �rst di¤erences and if this is rejected, to move on to test
for a unit root in the levels.5 On the other hand, stationarity of the levels implies
that the spectrum of �rst di¤erences is zero at the origin, thereby invalidating
a (nonparametric) stationarity test on �rst di¤erences. This suggests that the
sequence of stability tests should be one in which the stationarity of �yt is tested
only if stationarity of yt has been rejected; see also Choi and Yu (1997).

3Note that if the time series contrast can be described by a stationary process around a
nonzero mean, the �0 test will tend not to reject while �0(m) and t(m) will tend to reject;
see Busetti and Harvey (2006). Thus if the series are drifting apart because of a non-zero
deterministic di¤erence in growth rates, the contrast will tend to be identi�ed as one where
there is no convergence, which, of course, is the right outcome. If the �� test and �1(m) tests
are applied in levels, the latter will tend to reject while the former will not; it is not appropriate
to make allowance for a time trend.

4As shown in Muller (2005), a stationarity test will tend to reject the null hypothesis for
highly persistent time series. In other words, it is di¢ cult to control the size of stationarity tests
in the presence of strong autocorrelation; see also KPSS.

5The results in Pantula (1989) indicate that the test of a unit root in in�ation will tend to
reject if the price level is stationary.
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Taking those arguments into account we end up with the strategy described in
the chart in �gure 2, with �ve possible outcomes A,B,C,D,E. The starting point
is the unit root test on in�ation di¤erentials. If this doesn�t reject we have the
case of non-convergence (E), while a rejection will lead to testing the unit root
hypothesis in relative prices. The result of the latter test will lead to a stationarity
test in either levels or �rst di¤erences. The �nal outcomes are as follows.
(A) Relative prices are converging: rejection of unit root in �rst di¤erences

and levels, rejection of levels stationarity test.
(B) Relative prices have converged: rejection of unit root in �rst di¤erences

and levels, non rejection of levels stationarity test.
(C) In�ation rates are converging: rejection of unit root in �rst di¤erences but

not in levels, rejection of �rst di¤erences stationarity test.
(D) In�ation rates have converged: rejection of unit root in �rst di¤erences

but not in levels, non rejection of �rst di¤erences stationarity test.
(E) Non convergence: non rejection of unit root in �rst di¤erences.
The price and in�ation contrasts between Florence and Aosta provide again an

illustration. The null hypothesis of non convergence is rejected at the 1% level by
the ADF test on the in�ation di¤erential: the modi�ed AIC lag selection criterion
of Ng and Perron (2001) suggests 19 lags and resulting � 0 statistic is -3.21. The
unit root in levels is also rejected, as was seen in sub-section 2.2, and a rejection
also occurs for the levels stationarity tests. Thus, the sequential testing procedure
leads to the conclusion that relative prices are converging, that is case A. Further
details are provided in table 4 of Busetti, Fabiani, Harvey (2006). In particular,
it is interesting to notice that the �0(m) stationarity test applied to the in�ation
di¤erential would also reject the null hypothesis: the next sub-section explains
why this happens.

3.2. First di¤erences stationarity tests for highly persistent process in
levels

The properties of �rst di¤erences stationarity tests when the DGP is a highly
persistent process in levels depend on whether the initial condition is small or
large. In the former case the test is undersized, in the latter it is oversized with
the degree of oversizing increasing with the magnitude of the initial condition. We
present a small Monte-Carlo simulation experiment that illustrates the point.
We consider the AR(1) data generating process, t = 1; 2; :::; T;

yt = (1� c=T )yt�1 + �t; �t � NID(0; 1) (3.3)
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for some given initial condition y0. Thus, as in section 2.3, yt is a highly persistent
process for c > 0 and a unit root process for c = 0: Notice that a relatively small
c and a large initial condition are associated with yt converging to its long run
value of zero.
The validity of stationarity tests in �rst di¤erences requires that c = 0 in (3.3).

If this is not the case then the properties of the test depend on the magnitude of
the initial condition y0 relatively to the standard deviation of �t: In particular, the
test is undersized if y0 is small and (often dramatically) oversized if y0 is large. We
take �2� = 1, c = 0; 1; 2:5; 5; 10 and y0 = 0; 5; 10; 15; 20; 25; 30; 50: Table 2 reports
rejection frequencies for the stationarity tests �0(m); �1(m) computed on the �rst
di¤erenced data �yt; for T = 100, where the bandwidth parameter for spectral
estimation is equal to int(m(T=100)0:25) and m = 0; 4; 8.
For c = 0 the stationarity tests in �rst di¤erenced have (approximately) the

correct size, while they are undersized when c > 0 and the initial condition is
small. Oversizing occurs for a large initial condition, at least as large as 15 when
T = 100: Notice that oversizing can be huge, with the probability of rejecting the
null equal or close to 1 in many cases.
Intuitively, this oversizing problem can be explained if we think of a converging

path in levels: the �rst di¤erence is the slope of the series which keeps changing
mostly in the same direction in order to bring the level to its long run value.
Large initial conditions are not unusual for converging series, as can be seen in
the Florence-Aosta example.

4. Convergence properties of the CPI among Italian regions

We apply our testing strategy to in�ation and price di¤erentials among Italian
regions. The data used are the monthly Istat series of the Consumers� Price
Index in nineteen regional capitals for the period 1970M1-2003M12. The series
have been rebased, taking 2003 as the base year, and they have been seasonally
adjusted by removing a stochastic seasonal component using the STAMP package
of Koopman et al. (2000). Figure 3 shows the time pattern of the log of relative
price levels, computed as the di¤erence between each (log) regional price index
and the average national one. As we have set 2003 as the base year the contrasts
are constrained by construction to tend to zero near the end of the sample period.
The picture seems consistent with high persistence in price di¤erentials, either a
unit root or a converging process.
The summary results of the battery of convergence and stability tests on in-
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�ation and price di¤erentials on the 171 regional contrasts are reported in table
3. The �rst panel of the table reports the number of rejections (at 1%, 5% and
10% signi�cance levels) for the ADF test � 0 on the pairwise in�ation contrasts
(computed without �tting a mean). The number of lags in the ADF regression,
not shown in the table, is chosen according to the modi�ed Akaike information
criterion of Ng and Perron (2001). For all in�ation di¤erentials the test easily
rejects the null hypothesis, thus excluding case E of non-convergence. The results
of the unit root tests on price contrasts are reported in the second panel of the
table, both for the ADF test with a constant term, � 1; and for the modi�ed ADF
test, � � (where the data are transformed by subtracting the average of the ob-
servations in the �nal year). The contrasts are split into two groups, depending
on the size K of the initial condition (smaller or larger, in absolute value, than
10 times the residuals standard deviation). This is the second step of the testing
strategy summarised in �gure 2. According to the results of the new test � �; we
have 41 rejections (at least at the 10% level of signi�cance) of a unit root in rela-
tive prices; notice that, as predicted by the simulation results of table 1, � � rejects
the null hypothesis much more frequently than � 1 does for cases where the initial
condition is at least 10 times larger than the residuals standard deviation. The
third panel of table 3 contains the number of rejections of the KPSS stationarity
test, �1(m), carried out on those 41 contrasts identi�ed in the previous step: as
the hypothesis of stationarity turns out to be always rejected (at least at the 10%
level of signi�cance), we classify all these contrasts as cases A, i.e. pairs of cities
where relative prices are in the process of converging. Finally, the last panel of
the table presents the results of the stationarity test �0(m) computed on the 130
in�ation di¤erentials among pairs of cities for which � � could not reject the hy-
pothesis of a unit root in the price contrasts. Here the stationarity test rejects the
null hypothesis in 41 cases, which are labelled as cases C of converging in�ation
rates. The remaining 89 pairs of cities are then attributed to group D: in�ation
rates have already converged.
In summary, out of 171 regional contrasts we obtained 89 cases D of stability

(around zero) of in�ation di¤erentials, 41 C�s of converging in�ation rates, and
41 A�s of converging relative prices. Among the largest cities, it turns out that
in�ation rates have been stable between Milan, Naples and Turin, while relative
prices are converging between Rome and Milan and Rome and Naples. Detailed
results are provided in the working paper version Busetti, Fabiani, Harvey (2006).
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5. Concluding remarks

In examining the behaviour of relative price time series between di¤erent regions
it is important to distinguish between stability and convergence. Stability is as-
sessed by stationarity tests, while convergence is determined by unit root tests.
For pairwise contrasts of in�ation rates, these tests are best carried out without
removing a constant term. As an alternative to the stationarity test, a �t-test�on
the sample mean may be used. For price level contrasts, a Dickey-Fuller unit root
test run on data with the base year at the end, and no constant removed, displays
good power in testing for relative convergence. We derive the asymptotic distri-
bution of this test statistic, provide critical values and compare its performance
with other tests.
We set out a sequential testing strategy to establish whether convergence oc-

curs in relative prices or just in rates of in�ation. This strategy is applied to
the monthly series of the Consumer Price Index in the Italian regional capitals
over the period 1970-2003. It is found that all 171 pairwise contrasts of in�ation
rates have converged or are in the process of converging. However only about one
quarter of price level contrasts appear to be converging.
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0 5 10 15 20 25 30 50

τ1 0.28 0.37 0.64 0.92 1.00 1.00 1.00 1.00

τ∗ 0.14 0.22 0.54 0.89 0.98 1.00 1.00 1.00

τ∗
GLS,10 0.24 0.35 0.70 0.95 1.00 1.00 1.00 1.00

Q µ (1-10/T ,8 ) 0.12 0.37 0.78 0.96 0.99 1.00 1.00 1.00

ERS GLS,7 0.79 0.09 0.00 0.00 0.00 0.00 0.00 0.00

τ1 0.10 0.12 0.19 0.35 0.59 0.82 0.95 1.00

τ∗ 0.05 0.07 0.19 0.53 0.89 0.99 1.00 1.00

τ∗
GLS,10 0.09 0.12 0.26 0.56 0.88 0.99 1.00 1.00

Q µ (1-10/T ,8 ) 0.05 0.12 0.28 0.40 0.48 0.54 0.59 0.72

ERS GLS,7 0.41 0.08 0.00 0.00 0.00 0.00 0.00 0.00

τ1 0.06 0.06 0.07 0.09 0.13 0.19 0.27 0.74

τ∗ 0.03 0.04 0.07 0.18 0.43 0.75 0.94 1.00

τ∗
GLS,10 0.06 0.07 0.10 0.19 0.36 0.60 0.82 1.00

Q µ (1-10/T ,8 ) 0.04 0.06 0.10 0.12 0.12 0.10 0.08 0.02

ERS GLS,7 0.21 0.11 0.01 0.00 0.00 0.00 0.00 0.00

τ1 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.06

τ∗ 0.03 0.03 0.04 0.07 0.11 0.17 0.27 0.84

τ∗
GLS,10 0.05 0.05 0.06 0.07 0.09 0.12 0.17 0.51

Q µ (1-10/T ,8 ) 0.04 0.04 0.05 0.05 0.05 0.05 0.04 0.01

ERS GLS,7 0.12 0.11 0.07 0.03 0.01 0.00 0.00 0.00

τ1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

τ∗ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

τ∗
GLS,10 0.06 0.06 0.06 0.05 0.05 0.04 0.04 0.02

Q µ (1-10/T ,8 ) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

ERS GLS,7 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

c=1

c=0

Table 1. Power comparison of convergence tests - T=100

Initial Condition

c=10

c=5

c=2.5



m 0 5 10 15 20 25 30 50

c=10

0 0.00 0.00 0.00 0.30 0.97 1.00 1.00 1.00

4 0.00 0.00 0.01 0.26 0.83 0.99 1.00 1.00

8 0.00 0.00 0.02 0.24 0.64 0.91 0.98 1.00

0 0.00 0.00 0.03 0.28 0.80 0.99 1.00 1.00

4 0.00 0.00 0.03 0.23 0.62 0.90 0.99 1.00

8 0.00 0.00 0.04 0.18 0.43 0.70 0.87 1.00

c=5

0 0.00 0.00 0.01 0.36 0.93 1.00 1.00 1.00

4 0.00 0.00 0.03 0.37 0.88 0.99 1.00 1.00

8 0.00 0.00 0.05 0.39 0.82 0.98 1.00 1.00

0 0.00 0.01 0.05 0.20 0.46 0.76 0.93 1.00

4 0.00 0.01 0.05 0.18 0.39 0.67 0.87 1.00

8 0.00 0.01 0.05 0.15 0.33 0.56 0.77 1.00

c=2.5

0 0.00 0.00 0.03 0.22 0.61 0.91 0.99 1.00

4 0.00 0.00 0.04 0.25 0.63 0.90 0.99 1.00

8 0.00 0.01 0.06 0.29 0.64 0.90 0.98 1.00

0 0.02 0.02 0.04 0.08 0.15 0.25 0.36 0.84

4 0.01 0.02 0.04 0.07 0.13 0.22 0.31 0.79

8 0.01 0.02 0.03 0.07 0.12 0.18 0.27 0.73

c=1

0 0.01 0.01 0.03 0.09 0.18 0.33 0.49 0.96

4 0.01 0.02 0.04 0.10 0.21 0.35 0.52 0.96

8 0.01 0.02 0.05 0.12 0.24 0.38 0.55 0.96

0 0.04 0.04 0.04 0.04 0.05 0.05 0.06 0.11

4 0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.10

8 0.03 0.03 0.03 0.03 0.04 0.04 0.05 0.08

c=0

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

4 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

8 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

0 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

4 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

8 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

ξ0(m ) is a stationarity test without constant, with bandwidth equal to int(m(T/100)^.25).
ξ1(m ) is a stationarity test with constant, with bandwidth equal to int(m(T/100)^.25).
The initial condition is in units of the error standard deviation.

Table 2. Rejection frequencies of first differences stationarity tests for a highly 
persistent process in the levels - T=100

Initial Condition

ξ0(m )

ξ1(m )

ξ0(m )

ξ1(m )

ξ0(m )

ξ1(m )

ξ0(m )

ξ1(m )

ξ0(m )

ξ1(m )



Number of Number of rejections

contrasts 1% 5% 10%

Inflation contrasts: unit root test

τ0 171 167 171 171

Price contrasts: unit root tests

|K| <10 τ1 43 - 1 6

τ* 43 - 1 3

|K| ≥10 τ1 128 6 11 21

τ* 128 11 26 38

Price contrasts: stationarity test

ξ1(m ) 41 37 40 41

Inflation contrasts: stationarity test

ξ0(m ) 130 8 26 41

Table 3. Summary Results for the tests on the CPI in the 
Italian Regional Capitals



Figure 1 – Relative prices and inflation rates in Florence and Aosta 
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Figure 2 – Testing convergence in levels and first differences 
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Figure 3 – Regional relative prices, base year=2003 

(computed as differences with respect to the Italian average cost of living index) 
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