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Abstract

The paper considers a nonlinear duopoly game with heterogeneous players, boundely rational and naive
expectations. A duopoly game is modelled by two nonlinear difference equations. The existence and stability of
the equilibria of this system are studied. The complex dynamics, bifurcations and chaos are displayed by
computing numerically the largest Lyapunov exponents, sensitive dependence on initial conditions and fractal
dimension of the chaotic attractor.
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1. Introduction

Monopoly market has such a market structure in which a trade is completely controlled by
several firms. The fewness firms manufacture the same or homogeneous products and they must
consider not only the demand of market, but also the actions of the competitors. In 1838, the
French Mathematician Cournot was first to introduce the Cournot model which was most widely
used mathematical representations of duopoly market. Cournot (1838) investigated the case that
each player(firm) was provided with naive expectations in duopoly. He assumed that each firm is
able to produce precisely the quantity of production by its rival's output. But it is impossible that
all players are naive. There, different players' expectations are proposed: naive player, bounded
rational player and adaptive (Agiza and Elsadany, 2004a). So each player adopts his expectations
to adjust his outputs in order to maximize his profit.
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Recently, several works of the Cournot Model have been done. Many conclusions have shown
that Cournot Model has very abundant dynamical behavior such as cyclic, bifurcation and chaos
under the different expectations. So expectations play an important role in studying this economic
phenomena.

Several cases of each player with homogeneous expectations have been considered by some
authors (see puu, 1991; Puu, 1998; Agiza, 1998, 1999; Agiza et al., 2001, 2002; Kopel, 1996).
Puu (1991, 1998) firstly found a variety of complex dynamics arising in the Cournot duopoly case
including the appearance of attractors with fractal dimension. In Agiza (1998, 1999) and Agiza et
al. (2001, 2002), M. Kopel studied the dynamics of oligopoly models with more players and other
modification of Puu's model. The game models with heterogeneous players also have been
studied (Agiza and Elsadany, 2003, 2004b; Leonard and Nishimura, 1999; Den-Haan, 2001).

Agiza and Elsadany (2003) have applied the technique of Onazaki et al. (in press) to study the
dynamics of Cournot duopoly model which contains two heterogenous players, one boundedly
rational and the other naive. By modifying the linear cost function, we study the case of this model
with nonlinear cost function.

The paper is organized as follows. In Section 2we determine model the dynamical systems of a
duopoly game with heterogeneous expectations, boundedly rational and native by a two-
dimensional map. In Section 3we study the model of duopoly game. Explicit parametric conditions
of the existence, local stability and bifurcation of equilibrium points will be given. In Section 4we
show complex dynamic of this system via computing the largest Lyapunov exponents, sensitive
dependence on initial conditions and fractal dimension of the chaotic attractor by numerical
simulations.

2. Model

We consider that there are two firms producing goods which are perfect substitutes in a
oligopoly market. Let qi(t), i=1, 2 represent the output of ith firm during period t=0, 1, 2… The
duopolists determine the optimum quantities basing on their different expectations of the rival's
output in the subsequent period. The retail price p, a linear inverse demand function, is
determined from the total supply Q(t)=q1(t)+q2(t) in period t

p ¼ f ðQÞ ¼ a−bQ ð1Þ
where aN0, bN0. The cost function has the nonlinear form

CiðqiÞ ¼ ciq
2
i ; i ¼ 1; 2 ð2Þ

where ci, i=1, 2 are positive shift parameters to the cost functions of the firm i, i= 1, 2,
respectively. Hence, the single profit of the ith firm in the single period is given by

Piðq1; q2Þ ¼ qiða−bQÞ−ciq2i ; i ¼ 1; 2 ð3Þ

By (3), ith firm's output for period t+1 is decided by solving the optimization problem

q1ðt þ 1Þ ¼ arg maxP1ðq1ðtÞ; q2*ðt þ 1ÞÞ;

q2ðt þ 1Þ ¼ arg maxP2ðq1*ðt þ 1Þ; q2ðtÞÞ ð4Þ
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where qi
⁎(t+1) represents the expectation of jth firm about jth firm's production during period t+1

(i, j=1, 2, i≠ j).
Differentiating ∏i(qi, qj) with respect to qi, we obtain the marginal profit of ith firm at the

point (q1, q2) of the strategy space during period t

Ui tð Þ ¼ APiðqi; qjÞ
Aqi

¼ a−2 bþ cið Þqi−bqj; i; j ¼ 1; 2; i pj ð5Þ

This optimization problem has unique solution:

qi ¼ 1
2ðbþ ciÞ a−bqj

� � ð6Þ

For the player with boundedly rational, he determines quantities of production with the
information of local profit maximizers and increases(decreases) its output if Φi(t) is positive
(negative). In Dixit (1986), this adjustment mechanism has been called myopic by Dixit. The
dynamic adjustment mechanism can be modeled as

qi t þ 1ð Þ ¼ qi tð Þ þ aiqi tð ÞAPiðqi; qjÞ
Aqi

; t ¼ 0; 1; 2; :::; ð7Þ

where αi is a positive parameter and represents the speed of adjustment of ith firm. If the firm is a
naive player, his expectation of production of rival will be the same as in previous period. Then
the naive player decides his output according to Eq. (6).

In this paper, we consider each firm has different expectation to maximize his profit in duopoly
game. We assume firm 1 is a boundedly rational player and firm 2 is a naive player. With above
assumptions, we can express the process of duopoly game with heterogeneous players which is a
two-dimensional nonlinear map T(q1, q2)→(q1′, q2′) defined as

T :
q1 V¼ q1 þ aq1

AP1ðq1; q2Þ
Aq1

;

q2 V¼ 1
2ðbþ c2Þ a−bq1ð Þ

8>><
>>:

ð8Þ

where “′” denotes the unit-time advancement, that is if the right-hand side variables are
productions of period t, then the left-hand ones represent productions of period (t+1).
Substituting Eq. (5) into discrete dynamic system (8), we have

q1 V¼ q1 þ aq1ða−2ðbþ c1Þq1−bq2Þ;
q2 V¼ 1

2ðbþ c2Þ a−bq1ð Þ

8<
: ð9Þ

3. Analysis of model

In this paper, we are considering a economic model where only non-negative equilibrium
points are meaningful. So that we only pay attention to the nonnegative fixed points of (9) i.e. the
solution of the non-linear algebraic system as

q1ða−2ðbþ c1Þq1−bq2Þ ¼ 0;
1

2ðbþ c2Þ a−bq1ð Þ−q2 ¼ 0

8<
: ð10Þ
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which is obtained by setting qi′=qi, i=1, 2 in system (9) We have two fixed points of system (10)
E0 ¼ 0;

a

2ðbþ c2Þ
� �

and E1= (q1⁎, q2⁎) where

q1* ¼ aðbþ 2c2Þ
3b2 þ 4bc1 þ 4bc2 þ 4c1c2

; q2* ¼ aðbþ 2c1Þ
3b2 þ 4bc1 þ 4bc2 þ 4c1c2

ð11Þ

The fixed point E0 is called boundary equilibria (Bischi and Naimzada, 1999). It is clear that the
other fixed point E1 is unique Nash equilibrium, located at the intersection of the two reaction
curves which represent the locus of points of vanishing marginal profits in Eq. (5).

For studying the local stability of equilibrium point, we must consider the eigenvalues of the
Jacobian matrix of the system (9) on the complex plane.

The Jacobian matrix of (9) at the point (q1, q2) has the form

J q1; q2ð Þ ¼
1þ a½a−4ðbþ c1Þq1−bq2� −abq1

−
b

2ðbþ c2Þ 0

2
4

3
5 ð12Þ

Theorem 1. The boundary equilibria E0 of system(9) is a unstable point.

Proof. In order to prove this results, we consider the eigenvalues of Jacobian matrix J at E0

which take the form.

J E0ð Þ ¼
1þ a a−

ab
2ðbþ c2Þ

� �
0

−
b

2ðbþ c2Þ 0

2
664

3
775 ð13Þ

We have two eigenvalues of matrix J(E0), k1 ¼ 1þ a a−
ab

2ðbþ c2Þ
� � and λ2=0. From the condition that

a, b, ci (i=1, 2) are positive parameters, we have that |λ1|N1. Then E0 is unstable equilibrium
point (saddle point) of system (9). This completes the proof the proposition. □

We now investigate the local stability of Nash equilibrium. The Jacobian matrix (9) at E1 has
the form

J E1ð Þ ¼
1þ a½a−4ðbþ c1Þq1*−bq2*� −abq1*

−
b

2ðbþ c2Þ 0

2
4

3
5 ð14Þ

Its characteristic equation is

f ðkÞ ¼ k2−TrðJÞkþ DetðJÞ;
where Tr (J) is the trace and Det (J ) is the determinant of the Jacobian matrix defined in (14),

Tr Jð Þ ¼ 1þ a a−4 bþ c1ð Þq1*−bq2*
� 	

and Det Jð Þ ¼ −
abq1*

2ðbþ c2Þ
Since

Tr2 Jð Þ−4Det Jð Þ ¼ 1þ a a−4 bþ c1ð Þq1*−bq2*
� �� 	2 þ 2abq1*

bþ c2
ð15Þ

It is clear that Tr2(J )−4Det(J )N0, then the eigenvalues of Nash equilibrium are real.
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If the eigenvalues of the Jacobian matrix of fixed point E1 are inside the unit circle of the
complex plane, Nash equilibrium E1 is local stability. Using Jury's conditions (Puu, 2000), we
have necessary and sufficient condition for local stability of Nash equilibrium which are the
necessary and sufficient condition for |λi|b1, i=1, 2.

1.

1−Tr Jð Þ þ Det Jð Þ ¼ aaðbþ 2c2Þ
2ðbþ c2Þ N0

2.

1þ Tr Jð Þ þ Det Jð Þ ¼ 2þ aa−4a bþ c1 þ b2

8ðbþ c2Þ
� �

q1*−abq2*N0

3.

Det Jð Þ−1 ¼ −
abq1*

2ðbþ c2Þ−1b0

It is clear that the first condition and the third condition are always satisfied. Substituting (11)
into the second condition, this condition becomes

ab
4ðbþ c2Þð3b2 þ 4bc1 þ 4bc2 þ 4c1c2Þ
aðbþ 2c2Þð5b2 þ 4bc1 þ 4bc2 þ 4c1c2Þ ð16Þ

By Eq. (16), we have Theorem 2 about local stability of Nash equilibrium point E1.

Theorem 2. The Nash equilibrium E1 of system(9) is stable provided that

ab
4ðbþ c2Þð3b2 þ 4bc1 þ 4bc2 þ 4c1c2Þ
aðbþ 2c2Þð5b2 þ 4bc1 þ 4bc2 þ 4c1c2Þ.

From Theorem 2, we can obtain the region of stability of the Nash equilibrium point E1 about
the model parameters. For example, an increase of the speed of adjustment of boundedly rational
player with the other parameters held fixed has a destabilizing effect. In factor, an increase of α,
staring from a set of parameters which ensures the local stability of the Nash equilibrium can
bring out the region of the stability of Nash equilibrium point, crossing the flip bifurcation surface

a ¼ 4ðbþ c2Þð3b2 þ 4bc1 þ 4bc2 þ 4c1c2Þ
aðbþ 2c2Þð5b2 þ 4bc1 þ 4bc2 þ 4c1c2Þ. Obviously, the stability of Nash equilibrium point E1 depends

on the parameters of system. We also consider other case that the parameters α, b, c1 and c2 are
fixed and parameter a which represents the maximum price of the production. In this paper, the
case parameter α increases. Complex behaviors such as period doubling and chaotic attractors are
generated where the maximum Lyapunov exponents of the system (9) become positive.

4. Numerical simulations

The main purpose of this section is to show the complicated dynamic features of the dynamics
of a duopoly game (9) with heterogeneous players. The route that stability and period doubling
bifurcation to chaos for system (9) is shown.



Fig. 1. The bifurcation diagram of the trajectories of the discrete dynamic system (9).
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To provide some numerical evidence for chaotic behavior of system (9), we show several
numerical results, such as its bifurcations diagrams, strange attractors, Laypunov exponents,
sensitive dependence on initial conditions and fractal structure. In order to study the local stability
properties of the equilibrium points conveniently, we take a=10, b=1, c1=0.3 and c2=0.5.

Fig. 1 shows the bifurcation diagram with respect to α (speed of adjustment of boundedly
rational player), while other parameters are fixed. In Fig. 1, the Nash equilibrium E1= (2.94, 2.35)
is locally stable for small values of the parameter α. If α increases, the Nash equilibrium E1

becomes unstable and the bifurcation scenario is occurred. As α increases, infinitely many period-
Fig. 2. The strange attractor of the discrete dynamic system (9).



Fig. 3. Related the largest Lyapunov exponents as function of α.

144 J. Zhang et al. / Economic Modelling 24 (2007) 138–148
doubling bifurcations of the quantity behavior become chaotic. It is clear that the period-doubling
bifurcation occur at α=0.23. When αN0.23, we observe that flip bifurcation occurs and complex
dynamic behavior begins to appear.

Fig. 2 shows the strange attractor for the system (9) for the values of a=10, b=1, c1=0.3,
c2=0.5 and α=0.35, which exhibits a fractal structure similar to Henon (1976) attractor.

In order to analyze the parameter sets for which aperiodic behavior occurs, we study the largest
Lyapunov exponent, which depends on α. It is an evidence for chaos that the largest Lyapunov
exponent is positive. By the method of von Bremen et al. (1997), we have Fig. 3 that displays the
related maximal Lyapunov exponent as a function of α. From Fig. 3, we can easily get the degree
of the local stability for different values α when the largest Lyapunov exponent is positive. We
also determine the parameter sets for which the system (9) converges to cycles, aperiodic and
chaotic behavior.

The sensitivity to initial conditions is a characteristic of chaos. In order to demonstrate the
sensitivity to initial conditions of system (9), we compute two orbits with initial points (q10, q20)
and (q10+0.00001, q20) at the parameter values (a, b, c1, c2, α)= (10, 1, 0.3, 0.5, 0.36),
respectively. The results are plotted in Fig. 4.

The same to variable q2, Fig. 5 shows the sensitivity dependence on initial conditions, q2-
coordinates of the two orbits with the parameter values (a, b, c1, c2, α)= (10, 1, 0.3, 0.5, 0.36); the
q2-coordinates of initial conditions differ by 0.00001.

Strange attractors are typically characterized by fractal dimensions. We examine the important
characteristic of neighboring chaotic orbits to see how rapidly they separate each other. The
Lyapunov dimension (Kaplan and Yorke, 1979) is defined as follows:

dL ¼ jþ
Pi¼j

i¼1 ki
jkjj

with λ1, λ2, …, λn, where j is the largest integer such that ∑i=1
i=jλi≥0 and ∑i=1

i=j+1λib0.



Fig. 4. Shows sensitive dependence on initial conditions, the two orbits of q1-coordinates for (a, b, c1, c2, α)= (10, 1, 0.3 .5, 0.36).(1) (q10, q20)= (0.8, 0.5),(2)(q10, q20)= (0.80001,
0.5).
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Fig. 5. Shows sensitive dependence on initial conditions, the two orbits of q2-coordinates for (a, b, c1, c2, α)=(10, 1, 0.3, 0.5, 0.36). (1) (q10, q20)= (0.8, 0.5), (2) (q10, q20)=(0.8,
0.50001).
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In our paper, the two-dimensional map (9) has a Lyapunov dimension

dL ¼ 1þ k1
jk2j ; k1N0Nk2

By the definition of Lyapunov dimension (Kaplan and Yorke, 1979) and simulation of the
computer, we have the Lyapunov dimension of the strange attractor of system (9). At the parameter
values (a, b, c1, c2, α)=(10, 1, 0.3, 0.5, 0.36), system (9) has two different Lyapunov exponents,
λ1=0.39 and λ2=−1.92. Therefore, the system (9) has a fractal dimension dL=1+(0.39/1.92)≈1.2.
Then the system (9) exhibits a fractal structure and its attractor has the fractal dimension dL≈1.2.

5. Conclusion

In this paper, we analyzed the complex dynamics of a nonlinear, duopoly game with nonlinear
cost function, which contains two kinds of heterogeneous players: boundedly rational player and
naive player. The stability of equilibria, bifurcation and chaotic behavior are investigated in this
game. We show that the speed of adjustment of boundedly rational player may change the
stability of equilibria and cause a market structure to behave chaotically. For the low value speeds
of adjustment, the game has a stable Nash equilibrium. Increasing the values of speeds of
adjustment, the Nash equilibrium becomes unstable, through period-doubling bifurcation, more
complex attractors obtained, which may be periodic cycles or chaotic sets.
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