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Abstract

We analyze a nonlinear discrete-time Cournot duopoly game, where players have heteroge-
neous expectations. Two types of players are considered: boundedly rational and naive expecta-
tions. In this study we show that the dynamics of the duopoly game with players whose beliefs
are heterogeneous, may become complicated. The model gives more complex chaotic and unpre-
dictable trajectories as a consequence of increasing the speed of adjustment of boundedly rational
player. The equilibrium points and local stability of the duopoly game are investigated. As some
parameters of the model are varied, the stability of the Nash equilibrium point is lost and the
complex (periodic or chaotic) behavior occurs. Numerical simulations are presented to show that
players with heterogeneous beliefs make the duopoly game behave chaotically. Also, we get the
fractal dimension of the chaotic attractor of our map which is equivalent to the dimension of
Henon map.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

An oligopoly is a market system which is controlled by a few number of <rms
producing homogeneous products. The dynamic of oligopoly game is more complex
because oligopolist must consider not only the behaviors of the consumers, but also
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the reactions of the other competitors. Cournot, in 1838 [1], introduced the <rst formal
theory of oligopoly, who treated the case with naive expectations, so that in every step
each player assumes the last values taken by the competitors without estimation of
their future reactions.
Recently, several works have shown that the Cournot model may lead to complex

behaviors such as cyclic and chaotic, see, for example Refs. [2–7]. Among the <rst
to do this was Puu [3,4] who found a variety of complex dynamics arising in the
Cournot duopoly case including the appearance of attractors with fractal dimension.
Other studies on the dynamics of oligopoly models with more <rms and other modi<-
cations include Ahmed and Agiza [8], Agiza [5] and Agiza et al. [9] such eDorts have
been extended by Bischi and Kopel [10] in a duopoly game with adaptive expecta-
tions. The development of complex oligopoly dynamics theory have been reviewed in
Ref. [11].
Expectations play a key role in modelling economics phenomena. A producer can

choose his expectations rules of many available techniques to adjust his production
outputs. May be in the market of duopoly model each <rm behaves with diDerent
expectations strategies, so we are going to apply this kind of expectations in our model
which is common in reality.
In this paper we consider a duopoly model which is introduced in Ref. [7] but

each player form a diDerent strategy in order to compute his expected output. We
take <rm 1 represent a boundedly rational player while <rm 2 has naive expectations.
Each player adjusts his outputs towards the pro<t maximizing amount as target and
use his expectations rule. Recently, examples of oligopoly games with homogeneous
expectations are studied by Puu [4], Kopel [6], Agiza [12], Agiza et al. [13,14]. It
was shown that the dynamics of Cournot oligopoly game may never settle to a steady
state, and in the long run they exhibit bounded dynamic which may be periodic or
chaotic. Economic model with heterogeneous players is introduced see [15,16]. Also,
the dynamics of heterogeneous two-dimensional cobweb model have been studied by
Onozaki et al., see Ref. [17].
The main aim of this work is to investigate the dynamic behaviors of a heterogeneous

model representing two <rms using heterogeneous expectations rules. This mechanism
was applied in cobweb model [17] and gave us a guide to apply it in our study.
The paper is organized as follows. In Section 2 we describe the evolution of dynami-

cal systems of players with heterogeneous expectations rules. In Section 3, the dynamics
of a duopoly game with boundedly rational player and naive player is modelled by a
two-dimensional map. The existence and local stability of the equilibrium points of the
nonlinear map are analyzed. Complex dynamics of behavior occur under some changes
of control parameters of the model which are shown by numerical experiments. Fractal
dimension of the strange attractor of the map is measured numerically.

2. Heterogeneous expectations

In oligopoly game players choose simple expectations such as naive or complex as ra-
tional expectations. The players can use the same strategy (homogeneous expectations)
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or use diDerent strategies (heterogeneous expectations). Several economic models rep-
resent the dynamics of heterogeneous <rms, have been proposed in recent years see,
for example, Refs. [17,18]. In this study we consider duopoly game where each player
has diDerent strategy to maximize his pro<t.
Firms can use rational expectations if they assume perfect knowledge of underlying

market and this may not be available in real economic market. Also, it is well known
that in a duopoly model with a heterogeneous <rms their outputs depend upon ex-
pectations of all competitors. Hence, rational expectations can only be achieved under
unrealistic assumptions. For this reason <rms try to use another and my more realistic
method which is called bounded rationality. Firms usually do not have a complete
knowledge of the market, hence they try to use partial information based on the local
estimates of the marginal pro<t. At each time period t each <rm increases (decreases)
its production qi at the period (t + 1) if the marginal pro<t is positive (negative). If
the players use this kind of adjustments then they are boundedly rational players.
Let us consider a Cournot duopoly game where qi denotes the quantity supplied

by <rm i; i = 1; 2. In addition let P(qi + qj), i �= j; denote a twice diDerentiable and
nonincreasing inverse demand function and let Ci(qi) denote the twice diDerentiable
increasing cost function. Hence the pro<t of <rm i is given by

�i = P(qi + qj)qi − Ci(qi) : (1)

At each time period every player must form an expectation of the rival’s output in the
next time period in order to determine the corresponding pro<t-maximizing quantities
for period t + 1. If we denote by qi(t) the output of <rm i at time period t, then
its production qi(t + 1); i = 1; 2 for the period t + 1 is decided by solving the two
optimization problems.

q1(t + 1) = arg max
q1

�1(q1(t); qe2(t + 1)) ;

q2(t + 1) = arg max
q2

�2(qe1(t + 1); q2(t)) ; (2)

where the function �i(:; :) denotes the pro<t of the i the <rm and qej(t + 1) represents
the expectation of <rm i about the production decision of <rm j; (j = 1; 2; j �= i).
Cournot [1] assumed that qei (t + 1) = qi(t), <rm i expects that the production of <rm
j will remain the same as in current period (naive expectations). The solution of the
optimization problem of producer i can be expressed as q1(t + 1) = f(q2(t)), and
q2(t + 1) = g(q1(t)), so that the time evolution of the duopoly system is obtained by
the iteration of the two-dimensional map T : R2 → R2 given by

T :

{
q′1 = f(q2) ;

q′2 = g(q1) :
(3)

where ′ represents the one-period advancement operator.
The map (3) describes the duopoly game in the case of homogeneous expectations

(naive). The <xed points of the map (3) are located at the intersections of the two
reaction functions q1 = f(q2) and q2 = f(q1) and are called Cournot–Nash equilibria
of the two-players game.
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Firms try to use more complex expectations such as bounded rationality [19], hence
they try to use local information based on the marginal pro<t 9�i=9qi. At each time
period t each <rm increases (decreases) its production qi at the period (t + 1) if the
marginal pro<t is positive (negative). If the players use this kind of adjustments then
they are boundedly rational players and the dynamical equation of this game has the
form

qi(t + 1) = qi(t) + �iqi(t)
9�i
9qi(t)

; t = 0; 1; 2; : : : ; (4)

where �i is a positive parameter which represents the speed of adjustment. The dy-
namics of the game (4) was studied by Bischi and Naimzada [7].
In duopoly game with players use a diDerent expectations, for example the <rst

player is boundedly rational player and the other is naive. Hence the duopoly game in
this case are composed from the <rst equation of (4) and the second equation of (3).
Thus, the discrete dynamical system in this case is described by

q1(t + 1) = q1(t) + �1q1(t)
9�1

9q1(t)
;

q2(t + 1) = g(q1(t)) : (5)

Therefore, Eq. (5) describes the dynamics of a duopoly game with two players using
heterogeneous expectations. In the next section we are going to apply this technique
to a duopoly model with linear demand and cost functions.

3. Model

Let qi(t); i = 1; 2 represents the output of ith supplier during period t, with a pro-
duction cost function Ci(qi). The price prevailing in period t is determined by the total
supply Q(t) = q1(t) + q2(t) through a linear demand function

P = f(Q) = a− bQ ; (6)

where a and b positive constants of demand function. The cost function is taken in the
linear form

Ci(qi) = ciqi; i = 1; 2 ; (7)

where ci is the marginal cost of ith <rm. With these assumptions the single pro<t of
ith <rm is given by

�i = qi(a− bQ)− ciqi; i = 1; 2 : (8)

Then the marginal pro<t of ith <rm at the point (q1; q2) of the strategy space is
given by

9�i
9qi

= a− ci − 2bqi − bqj; i; j = 1; 2; j �= i : (9)

This optimization problem has unique solution in the form

qi = ri(qj) =
1
2b
(a− ci − bqj) : (10)
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If the two <rms are naive players, then the duopoly game is describe from Eq. (3)
by using Eq. (10) which has a linear form and the Nash equilibrium is asymptotically
stable [6]. In this study we consider two players with diDerent expectation, which the
<rst is boundedly rationality player and the other naive player. The dynamic equation
of the <rst player (boundedly rational player) is obtained from inserting (9) in (3)
which has the form

q1(t + 1) = q1(t) + �q1(t)(a− c1 − 2bq1(t)− bq2(t)) : (11)

Using second equation of Eq. (3) the second player (naive) updates his output
according to the dynamic equation

q2(t + 1) =
1
2b
(a− c2 − bq1(t)) : (12)

Then the duopoly game with heterogeneous players is described by a two-dimensional
nonlinear map

T (q1; q2)→ (q′1; q
′
2)

which is de<ned from coupling the dynamic Eqs. (11) and (12) as follows:

T :

{
q′1 = q1 + �q1(a− c1 − 2bq1 − bq2) ;
q′2 =

1
2b (a− c2 − bq1) :

(13)

The map (13) is an invertable map of the plane. The study of the dynamical prop-
erties of the map (13) allows us to have information on the long-run behavior of
heterogeneous players. Starting from given initial condition (q10 ;q20), the iteration of
Eq. (13) uniquely determines a trajectory of the states of <rms output.
(q1(t); q2(t)) = T t(q10 ;q20); t = 0; 1; 2; : : : .

3.1. Equilibrium points and local stability

The <xed points of the map (13) are obtained as nonnegative solutions of the alge-
braic system

q1(a− c1 − 2bq1 − bq2) = 0 ;
(a− c2 − 2bq2 − bq1) = 0

which is obtained by setting q′i=qi; i=1; 2 in Eq. (13). We can have at most two <xed
points E0 = (0; (a− c2)=2b) and E∗ = (q∗1 ; q∗2 ): The <xed point E0 is called a boundary
equilibrium [7] and have economic meaning when c2¡a. The second equilibrium E∗
is called Nash equilibrium where

q∗1 =
a+ c2 − 2c1

3b
and q∗2 =

a+ c1 − 2c2
3b

(14)

provided that

2c1 − c2¡a ;

2c2 − c1¡a : (15)



H.N. Agiza, A.A. Elsadany / Physica A 320 (2003) 512–524 517

It is easy to verify that the equilibrium point E∗ is located at the intersection of the
two reaction curves which represent the locus of points of vanishing marginal pro<t in
Eq. (9). In the following, we assume that Eq. (15) is satis<ed, so the Nash equilibrium
E∗ exists.
The study of the local stability of equilibrium solutions is based on the localization,

on the complex plane of the eigenvalues of the Jacobian matrix of the two-dimensional
map (Eq. (13)).
The study of the local stability of equilibrium solutions is based on the localization,

on the complex plane of the eigenvalues of the Jacobian matrix of the two-dimensional
map (Eq. (13)).
The Jacobian matrix of the map (13) at the state (q1; q2) has the from

J (q1; q2) =

[
1 + �(a− 4bq1 − bq2 − c1) −�bq1

−1
2 0

]
: (16)

The determinant of the matrix J is

Det =− 1
2 �bq1 :

Hence the map (13) is dissipative dynamical system when |�bq1|¡ 2:

Lemma 1. The 7xed point E0 of the map (Eq. (13)) is unstable.

Proof. In order to prove this results, we estimate the eigenvalues of Jacobian matrix
J at E0. The Jacobian matrix has the form

J (E0) =


 1 + �

2
(a− 2c1 + c2) 0

− 1
2 0


 :

The matrix J (E0) has two eigenvalues �1 =1+(�=2)(a−2c1 + c2) and �2 =0: From
condition (15), it follows that |�1|¿ 1. Then E0 is unstable <xed point (saddle point)
for the map (13) and this completes the proof.

3.1.1. Local stability of Nash equilibrium
We study the local stability of Nash equilibrium of two-dimensional map (13). The

Jacobian matrix (16) at E∗, which take the form

J (E∗) =

[
1− 2�bq∗1 −�bq∗1
− 1
2 0

]
: (17)

The characteristic equations of J (E∗) is P(�) = �2 − Tr �+Det = 0 where Tr is the
trace and Det is the determinant of the Jacobian matrix de<nes in (17), Tr=1−2�bq∗1
and Det =− 1

2�bq
∗
1 :

Since (Tr)2 − 4Det = (1 − 2�bq∗1 )
2 + 2�bq∗1 . It is clear that (Tr)

2 − 4Det ¿ 0 (has
positive discriminant), then we deduce that the eigenvalues of Nash equilibrium are
real. The local stability of Nash equilibrium is given by using Jury’s conditions [21]
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which are:

1. |Det|¡ 1
2. 1− Tr + Det ¿ 0; and
3. 1 + Tr + Det ¿ 0.

The <rst condition is |�bq∗1 |¡ 2; which implies that

�¡
6

(a− 2c1 + c2)
: (18)

The second condition 1−Tr+Det= 3
2�bq

∗
1¿ 0, then the second condition is satis<ed.

Then the third condition becomes
5
2 �bq

∗
1 − 2¡ 0 :

This inequality is equivalent to

�¡
12

5(a− 2c1 + c2)
: (19)

Form (18) and (19), it follows that the Nash equilibrium is stable if �¡ 12=5(a−
2c1 + c2) and hence the following lemma is proved.

Lemma 2. The Nash equilibrium E∗ of the map (Eq. (13)) is stable provided that
�¡ 12=5(a− 2c1 + c2):

From the previous lemma, we obtain information of the eDects of the model param-
eters on the local stability of Nash equilibrium point E∗. For example, an increase of
the speed of adjustment of boundedly rational player with the other parameters held
<xed, has a destabilizing eDect. In fact, an increase of �, starting from a set of pa-
rameters which ensures the local stability of the Nash equilibrium, can bring out the
region of the stability of Nash equilibrium point, crossing the Mip bifurcation surface
� = 12=5(a− 2c1 + c2). Similar argument apply if the parameters �; b; c1 and c2 are
<xed parameters and the parameter a, which represents the maximum price of the good
produced, is increased. In this case the region of stability of E∗ becomes small, and
this implies that E∗ losses its stability. Complex behaviors such as period doubling and
chaotic attractors are generated where the maximum Lyapunov exponents of the map
(13) become positives.

3.2. Numerical investigations

The main purpose of this section is to show that the qualitative behavior of the
solutions of the duopoly game (13) with heterogeneous player generates a complex
behavior that the case of duopoly game with homogeneous (naive) player.
To provide some numerical evidence for the chaotic behavior of system (13), we

present various numerical results here to show the chaoticity, including its bifurca-
tions diagrams, strange attractors, Laypunov exponents, Sensitive dependence on ini-
tial conditions and fractal structure. In order to study the local stability properties
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Fig. 1. Bifurcation diagram with respect to the parameter � speed of adjustment of bounded rational player,
with other <xed parameters a = 10; b = 0:5; c1 = 3; and c2 = 5:

of the equilibrium points, it is convenient to take the parameters values as follows:
a= 10; b= 0:5; c1 = 3 and c2 = 5:
Fig. 1 shows the bifurcation diagram with respect to the parameter � (speed of

adjustment of boundedly rational player), while the other parameters are <xed (a =
10; b = 0:5; c1 = 3, and c2 = 5): In fact a bifurcation diagram of a two-dimensional
map (13) shows attractor of the model (13) as a multi-valued of two-dimensional map
of one parameter. In Fig. 1, the bifurcation scenario is occurred, if � is small then
three exists a stable equilibrium point (Nash). As one can see the Nash equilibrium
point (6; 2) is locally stable for small values of �. As � increases, the Nash equilibrium
becomes unstable, in<nitely many period doubling bifurcations of the quantity behavior
becomes chaotic, as � increased. It means for a large values of speed of adjustment
of bounded rational player �, the system converge always to complex dynamics. Also,
one can see that the period doubling bifurcation occur at �= 4

15 . If the case of �¿
4
15 ,

one observes Mip bifurcation occurs and complex dynamic behavior begin to appear
for 4

15¡�¡ 1:
A bifurcation diagram with respect to the marginal cost of the <rst player c1, while

other parameters are <xed as follows a= 10; b= 0:5; c2 = 5 and � = 0:335, is shown
in Fig. 2.
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Fig. 2. A bifurcation diagram with respect to the marginal cost of the <rst player c1, with other parameters
<xed at a = 10; b = 0:5; c2 = 5 and � = 0:335.

We show the graph of a strange attractor for the parameter constellation (a; b; c1;
c2; �)= (10; 0:5; 3; 5; 0:42) in Fig. 3, which exhibits a fractal structure similar to Henon
attractor [22].
In order to analyze the parameter sets for which aperiodic behavior occurs, one can

compute the maximal Lyapunov exponent depend on �. For example, if the maximal
Lyapunov exponent is positive, one has evidence for chaos. Moreover, by comparing the
standard bifurcation diagram in �, one obtains a better understanding of the particular
properties of the system. In order to study the relations between the local stability of
the Nash equilibrium point and the speed of adjustment of boundedly rational player
�, one can compute the maximal Lyapunov exponents for adjustment factor in the
environment of 1. Fig. 4 displays the related maximal Lyapunov exponents as a function
of �. From Fig. 4, one can easily determine the degree of the local stability for diDerent
values of �∈ ( 415 ; 1). At value of �¿ 4

15 the maximal Lyapunov exponents is positive.
A positive value of maximal Lyapunov exponents implies sensitive dependence on
initial condition for chaotic behavior. From the maximal Lyapunov exponents diagram
it is easy to determine the parameter sets for which the system converges to cycles,
aperiodic, chaotic behavior. Beyond that its even possible to diDerentiate between cycles
of very higher order and aperiodic behavior of the map (13) see Fig. 4.
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Fig. 3. We show the graph of a strange attractor for the parameter constellation (a; b; c1; c2; �) =
(10; 0:5; 3; 5; 0:41).

Fig. 4. Related maximal Lyapunov exponents as a function of �.
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Fig. 5. For sensitive dependence on initial conditions: for system (13), parameter values (a; b; c1; c2; �) =
(10; 0:5; 3; 5; 0:4). and initial conditions (q10; q20).

3.2.1. Sensitive dependence on initial conditions
To demonstrate the sensitivity to initial conditions of system (13), we compute two

orbits with initial points (q10 ; q20) and (q10 + 0:0001; q20), respectively. The results are
shown in Figs. 5 and 6. At the beginning the time series are indistinguishable; but
after a number of iterations, the diDerence between them builds up rapidly.
Figs. 5 and 6 show sensitive dependence on initial conditions, q1-coordinates of

the two orbits, for system (13), plotted against the time with the parameter constella-
tion (a; b; c1; c2; �) = (10; 0:5; 3; 5; 0:4); the q1-coordinates of initial conditions diDer by
0.0001, the other coordinate kept equal.

3.2.2. Fractal dimension of the map (13)
Strange attractors are typically characterized by fractal dimensions. We examine the

important characteristic of neighboring chaotic orbits to see how rapidly they separate
each other. The Lyapunov dimension see Refs. [20,23] is de<ned as follows:

dL = j +
∑i=j

i=1 �i
|�j|

with �1; �2; : : : ; �n, where j is the largest integer such that
∑i=j

i=1 �i¿ 0 and
∑i=j+1

i=1 ×
�i ¡ 0:
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Fig. 6. For sensitive dependence on initial conditions for system (13), parameter values (a; b; c1; c2; �) =
(10; 0:5; 3; 5; 0:4) and initial conditions (q10 + 0:0001; q20).

In our case of the two-dimensional map has the Lyapunov dimension which is
given by

dL = 1 +
�1
|�2| ; �1¿ 0¿�2 :

By the de<nition of the Lyapunov dimension and with help of the computer simula-
tion one can show that the Lyapunov dimension of the strange attractor of system (13).
At the parameters values (a; b; c1; c2; �) = (10; 0:5; 3; 5; 0:41) two Lyapunov exponents
exists and are �1=0:28 and �2=−1:06: Therefore, the map (13) has a fractal dimension
dL ≈ 1 + 0:28

1:06 ≈ 1:26, which is the same fractal dimension of Henon map [24].

4. Conclusions

We have investigated the dynamics of a nonlinear, two-dimensional duopoly game,
which contains two-types of heterogeneous players: boundedly rational player and naive
player. This game is described by a two-dimensional invertible map. The stability of
equilibria, bifurcation and chaotic behavior are analyzed. The inMuence of the main
parameters (such as the speed of adjustment of boundedly rational player, the maximum
price of demand function and the marginal costs of players) on the local stability is
studied. We deduced that introducing heterogeneous expectations for players in the
duopoly game cause a market structure to behave chaotically.
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